Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation

نویسندگان

  • Daniel Hernández-Lobato
  • José Miguel Hernández-Lobato
  • Pierre Dupont
چکیده

We describe a Bayesian method for group feature selection in linear regression problems. The method is based on a generalized version of the standard spike-and-slab prior distribution which is often used for individual feature selection. Exact Bayesian inference under the prior considered is infeasible for typical regression problems. However, approximate inference can be carried out efficiently using Expectation Propagation (EP). A detailed analysis of the generalized spike-and-slab prior shows that it is well suited for regression problems that are sparse at the group level. Furthermore, this prior can be used to introduce prior knowledge about specific groups of features that are a priori believed to be more relevant. An experimental evaluation compares the performance of the proposed method with those of group LASSO, Bayesian group LASSO, automatic relevance determination and additional variants used for group feature selection. The results of these experiments show that a model based on the generalized spike-and-slab prior and the EP algorithm has state-of-the-art prediction performance in the problems analyzed. Furthermore, this model is also very useful to carry out sequential experimental design (also known as active learning), where the data instances that are most informative are iteratively included in the training set, reducing the number of instances needed to obtain a particular level of prediction accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expectation Propagation for Bayesian Multi-task Feature Selection

In this paper we propose a Bayesian model for multi-task feature selection. This model is based on a generalized spike and slab sparse prior distribution that enforces the selection of a common subset of features across several tasks. Since exact Bayesian inference in this model is intractable, approximate inference is performed through expectation propagation (EP). EP approximates the posterio...

متن کامل

Spike-and-Slab Dirichlet Process Mixture Models

In this paper, Spike-and-Slab Dirichlet Process (SS-DP) priors are introduced and discussed for non-parametric Bayesian modeling and inference, especially in the mixture models context. Specifying a spike-and-slab base measure for DP priors combines the merits of Dirichlet process and spike-and-slab priors and serves as a flexible approach in Bayesian model selection and averaging. Computationa...

متن کامل

Bayesian Inference for Structured Spike and Slab Priors

Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial Gaussian process on the spike and slab probabilities. Thus, prior information on the structure of t...

متن کامل

Spike and Slab Variable Selection: Frequentist and Bayesian Strategies

Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw connections to frequentist generalized ridge regression estimation. Specifically, we study the usefu...

متن کامل

A Majorization-minimization Approach to Variable Selection Using Spike and Slab Priors

We develop a method to carry out MAP estimation for a class of Bayesian regression models in which coefficients are assigned with Gaussian-based spike and slab priors. The objective function in the corresponding optimization problem has a Lagrangian form in that regression coefficients are regularized by a mixture of squared l2 and l0 norms. A tight approximation to the l0 norm using majorizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013